YU XIANG

Bellevue, WA 98004

J 518-833-4710 **▼** yux1991@gmail.com

EDUCATION

Doctor of Philosophy in Physics, Rensselaer Polytechnic Institute Aug. 2014 – Dec. 2019 GPA: 3.88 of 4.00 | Relevant Courses: Quantum Mechanics, Statistical Mechanics

Bachelor of Science in Physics, Wuhan University GPA: 3.43 of 4.00 | Relevant Courses: Advanced Mathematics, Linear Algebra, Probability

SKILLS

Programming: Python, MATLAB, SQL, C/C++, Perl Frameworks: Tensorflow, PyTorch, Scikit-Learn, Numpy, CUDA, Qt Machine Learning: Time Series Forecasting, A/B Testing, Computer Vision, Natural Language Processing Tools: AWS, Git, Docker, LATEX

EXPERIENCE

Applied Scientist, Amazon | Seattle, WA

- Created a one-stop solution to the long-term forecasting problem with highly sparse inputs by designing a novel multivariate encoder-decoder attention model with two-head outputs.
- Setup the data pipeline and deployed the models on native AWS to retrain and make predictions on any given cadence, while continuously monitoring the input data using a model drift detector.
- Designed new features and expanded the existing ones to provide personalized recommendations to the drivers via Alexa by utilizing knowledge graph built from human annotation.
- Improved the recall metrics of DNN models by 8% using state-of-art natural language processing technologies to help reduce the customer friction.

Seismic Imager, CGG | Houston, TX

- Provided optimal quality control for the input seismic raw data by analyzing the statistics from billions of seismic records using SQL and mapping out key metrics using Hadoop/Spark big-data tools.
- Processed petabytes of seismic data by detecting anomalies using sparse transformation, removing seismic echoes using adaptive subtraction, and imputing missing features with compressed sensing techniques.
- Helped the client save almost \$30MM per production well by providing unbiased interpretation of the geological features using machine learning techniques including SVM and boosted trees.

PROJECTS

Open-Source Software for Electron Diffraction Image Processing

- Designed the object-oriented architecture, implemented the software with Python (Github repository: PyRHEED), and provided technical support to users from several research groups across the world.
- Improved the average computational efficiency of the back-end processing module by about 100 times through NumPy vectorization and CUDA parallel computing.
- Built the data pipeline from raw reflection high energy electron diffraction (RHEED) images to processing-ready datasets through autonomous labeling, noise reduction, standardization and featurization.

RHEED Data Analysis With Machine Learning

- Extracted the three-dimensional probability density distribution of the diffracted electron waves from the preprocessed RHEED datasets by learning the parameters of a Gaussian mixture model.
- Simulated thousands of crystal domains based on the Voronoi tessellation using Monte Carlo methods, in order to be combined with the experimentally extracted features for model parameter estimation.
- Estimated the unknown statistics such as the lattice constant, grain size, and preferred orientations from the RHEED images with a Bayesian regression approach.

AWARDS

The Karen & Lester Gerhardt Prize in Science and Engineering at Rensselaer Polytechnic Institute	May 2020
Paul S. Ho '65 Prize in Physics at Rensselaer Polytechnic Institute	May 2019
Hillard B. Huntington Award (1976) at Rensselaer Polytechnic Institute	May 2017
Presidential Graduate Research Fellowship Award at Rensselaer Polytechnic Institute	Oct. 2015

Sep. 2010 – Jun. 2014 Wuhan, China

Troy, NY

May 2016 - Dec. 2019

Jul. 2018 – Dec. 2019

May 2021 - Present